Final Exam - Analysis IV B. Math III

24 April, 2023
(i) Duration of the exam is 3 hours.
(ii) The maximum number of points you can score in the exam is 100 (total $=110)$.
(iii) You are not allowed to consult any notes or external sources for the exam.

Name: \qquad

Roll Number: \qquad

For $f \in L^{1}[-\pi, \pi]$, the Fourier coefficients of f are given by

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x .
$$

The series $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ is the Fourier series of f. The nth Cesaro mean of the Fourier series for f is denoted by $\sigma_{n}(f)$.

1. Let $S^{1}:=\{z \in \mathbb{C}:|z|=1\}$, and let \mathscr{A} be the algebra of functions on S^{1} of the form,

$$
f(z)=\sum_{n=0}^{N} c_{n} z^{n},
$$

where $c_{n} \in \mathbb{C}$.
(a) (10 points) Show that \mathscr{A} separates points on S^{1} and vanishes at no point of S^{1}.
(b) (5 points) Show that there are continuous complex-valued functions on S^{1} which are not in the uniform closure of \mathscr{A}.

Total for Question 1: 15
2. Let $\left\{f_{n}\right\}$ be a sequence of bounded real-valued functions on $[0,1]$, and let F_{n} be defined by

$$
F_{n}(x):=\int_{0}^{x} f(t) d t
$$

(a) (5 points) Show that the sequence $\left\{F_{n}\right\}$ has a convergent subsequence if there is some $M>0$ such that $\left\|f_{n}\right\|_{\infty}<M$ for all $n \in \mathbb{N}$.
(b) (10 points) Show that the sequence $\left\{F_{n}\right\}$ has a convergent subsequence if there is some $M>0$ such that $\int_{0}^{1}\left|f_{n}(t)\right|^{2} d t<M$ for all $n \in \mathbb{N}$.

Total for Question 2: 15
3. (20 points) Suppose that f is a 2π-periodic function on \mathbb{R} that satisfies the Lipschitz condition of order $\alpha(0<\alpha \leq 1)$; that is $|f(x+h)-f(x)| \leq C|h|^{\alpha}$ for $C>0$ independent of x. Show that if a_{n}, b_{n} are Fourier coefficients of f, then

$$
a_{n}=O\left(n^{-\alpha}\right), b_{n}=O\left(n^{-\alpha}\right)
$$

Total for Question 3: 20
4. (20 points) Assume that f is a 2π-periodic function integrable on $[-\pi, \pi]$ and that f is of bounded variation on $\left[x_{0}-\delta, x_{0}+\delta\right]$. Show that the Fourier series of f at x_{0} converges to $\frac{1}{2}\left(f\left(x_{0}^{+}\right)+f\left(x_{0}^{-}\right)\right)$.

Total for Question 4: 20
5. (20 points) Assume that f is 2π-periodic on \mathbb{R} and $f \in L^{1}[-\pi, \pi]$. Then show that

$$
\lim _{n \rightarrow \infty}\left\|\sigma_{n}(f)-f\right\|_{1}=\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left|\sigma_{n}(f)(x)-f(x)\right| d x=0
$$

Total for Question 5: 20
6. (20 points) Show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Total for Question 6: 20

